
Federated Identity
Opportunities & Risks

2

Dominick Baier

•  Former ERNW employee
•  Security consultant at thinktecture

–  application security in distributed systems
–  identity management
–  mostly Windows & .NET

•  http://www.leastprivilege.com
•  dominick.baier@thinktecture.com

3

Objectives

•  What is federated identity?
•  Why would I care?
•  Anatomy of federated identity
•  Enterprise & consumer usage
•  Security considerations

4

What is identity?

•  Too many definitions
–  what you say about your self
–  what others say about yourself

•  Technically speaking
–  proving you are a valid directory entry

Bob Application User Store

5

What is federated identity?

•  Again many definitions
–  being able to use your identity in more than one security

domain
–  often in single-sign-on style

Bob

6

Where is it used?

•  Enterprise space
–  connect customers and partners to internal applications
–  connect employees to external applications
–  internal federation between branches/domains

•  Consumer space
–  re-use accounts between various internet applications
–  more for leisure type of apps – less e-commerce

•  ISV space
–  somewhere in-between
–  depends on to whom they want to sell their software to

7

Federated authentication

•  Toughest problem to solve
–  authentication across security boundaries
–  without replicating accounts

•  Various requirements
–  providing a stable (scoped) user identifier
–  provide additional information for authorization &

personalization

•  Bunch of protocols out there
–  WS-Federation, WS-Trust, SAML (Enterprise)
–  OpenID, OAuth/WRAP (Consumer)

8

Federated authentication

 Bob Application

Security
Token

Service

1

2

 Token
Trust

9

Enterprise space

•  SAML 2.0 Protocols (SUN, RSA, IBM)
–  SAML 2.0 token type
–  various profiles (web apps & services)

•  WS-* and friends (Microsoft, IBM, VeriSign)
–  WS-Federation Passive Profile (web applications)
–  WS-Trust, WS-Security (web services)
–  token agnostic, but typically SAML 1.1/2.0

•  Both rely on a batch of sub-specifications
–  HTTP, XML Encryption, XML Signatures etc…

10

SAML Assertion

<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"> 
  <saml:AttributeStatement> 
    <saml:Attribute AttributeName="userid" 
                               AttributeNamespace="http://..."> 
      <saml:AttributeValue>42</saml:AttributeValue> 
    </saml:Attribute> 

    <saml:Attribute AttributeName="name" 
                               AttributeNamespace="http://... "> 
      <saml:AttributeValue>Dominick</saml:AttributeValue> 
    </saml:Attribute> 
    <saml:Attribute AttributeName="department" 
                               AttributeNamespace="http://... "> 
      <saml:AttributeValue>Research</saml:AttributeValue> 
    </saml:Attribute> 
  </saml:AttributeStatement> 

  <Signature xmlns="http://www.w3.org/2000/09/xmldsig#" /> 
</saml:Assertion> 

11

Passive token request (WS-Federation)

 Client Relying Party

Identity
Provider

GET
/login

GET /app

<form method="POST" action="http://server/app/"> 
  <input name="wresult" value="<saml:Assertion…" /> 
  … 
  <script > 
      window.setTimeout('document.forms[0].submit()', 0); 
  </script> 
</form> 

login?wa=wsignin1.0&wtrealm=address_of_rp

POST /app

12

SAML Bearer tokens

•  Token provided as-is
•  Optionally encrypted
•  Owner of token can authenticate

–  either legitimate or eavesdropping etc..
•  Replay attack/transport protection important

13

Active token request (WS-Trust)

 Client Relying Party

Identity
Provider

<RequestSecurityToken> 
  <RequestType>Issue</RequestType>  
  <TokenType>SAML#1.1</TokenType> 

  <AppliesTo> 
    <EndpointReference> 
        <Address>address_of_rp</Address>  
        <Identity>cert_of_rp</Identity> 
    </EndpointReference> 
  </AppliesTo> 
<RequestSecurityToken> 

RST/
RSTR

<RequestSecurityTokenResponse> 
  <saml:Assertion> 
    … 
  </saml:Assertion> 
<RequestSecurityTokenResponse> 

SOAP w/ security header

14

SAML Proof-of-Possession tokens

•  Similar to Kerberos service tickets
•  Tokens must be encrypted
•  (Symmetric) key material both embedded in token and in

response message
–  key used to sign message to relying party thus proving to be

the original requester

<RequestSecurityTokenResponse> 
  <entropy>abc</entropy> 
  <saml:Assertion> 
    <entropy>abc</entropy> 
  </saml:Assertion> 
<RequestSecurityTokenResponse> 

15

Common scenario

Identity Provider Federation Gateway

1
2

3

4

trust

trust

16

Home realm discovery

•  Common issue in web applications
–  how does the application know where the user is coming from?

•  Several ways to approach this problem
–  Resource-STS provides UI
–  home realm encoded in URL

•  https://www.app.com/partner1

17

Products (excerpt)

•  Security Token Services / Identity Provider
–  Microsoft Active Directory Federation Services 2.0
–  IBM Tivoli Federation Manager
–  Sun OpenSSO
–  CA SiteMinder
–  Novell Access Manager

•  Relying Party / Service Provider toolkits
–  Microsoft Windows Identity Foundation (.NET)
–  Bandit (Java)
–  simpleSAML (PHP)

18

Consumer space

•  OpenID
–  easy to implement authentication protocol
–  large backing in community
–  plurality of providers/applications by design
–  limited security features in standard profile
–  based on HTTP

•  OAuth/WRAP
–  mechanism to access protected resources/APIs
–  piggybacks on various authentication mechanisms
–  enables „simple delegation“ scenarios

19

OpenID

•  Most popular 3rd party authentication mechanism in the
consumer space
–  Google
–  Facebook
–  Yahoo
–  Twitter
–  Flickr
–  MySpace
–  AOL
–  Verisign
–  MyOpenID

•  Approx. one billion user accounts / 50K enabled web sites

20

OpenID 2.0 authentication (in its simplest form)

 Client Web App

OpenID
Provider

GET
/login

login?openid.claimed_id=leastprivilege.myopenid.com&
 openid.assoc_handle={HMAC-SHA256}{…}
 openid.sreg.optional=email,fullname…
 openid.return_to=https://…

-  find login page
-  Diffie Hellman key exchange

/?openid.claimed_id=…
 openid.assoc_handle=…
 openid.response_nonce=…
 openid.sreg.email=dbaier@gmail.com

21

„Simple delegation“

•  Grant access to protected resource „on behalf of“

Logon Service Protected Resource 3rd Party Application

-  authenticate
-  acquire delegation token
 - scoped to certain resources
 - time bombed

use token

 pass token on

22

Toolkits (excerpt)

•  Plugins for various blog/CMS engines…
–  Drupal, Wordpress, phpBB

•  DotNetOpenAuth (.NET)
•  JOpenID (Java)
•  PHP OpenID
•  Ruby OpenID
•  OpenID4Perl
•  Google AppEngine OpenID (Python)

23

Problems with federated identity

24

Issue - who‘s identity is it & who controls it?

•  Not much of a problem in enterprise space
–  user‘s identity is owned by the employer anyway
–  typically very tight trust relationships
–  minimum disclosure policy typically already in the company‘s

interest
•  Different story in consumer space

–  federation relationships typically unclear to user
–  too much has happened already
–  users often prefer „manual“ solutions (and isolation)
–  all based on trust – and often there‘s not much of that

25

Technical issues

•  Protocols are complex
–  shouldn‘t try implement yourself
–  go with a proven library/product

•  The federated identity is an attractive target
–  gives access to many resources with a single credential
–  phishing
–  CSRF

•  In most cases, the browser is the driver of the protocol
–  all known (and unknown) attacks against browsers (or their

operators)
–  think SslStrip (additional encryption of token recommended)
–  web services typically don‘t have this issue due to stricter

security handling

26

Summary

•  Federated identity has benefits
–  reduction of (potentially poor) credentials
–  streamlining of login experience
–  removal of authentication code in applications
–  isolation of complex security related code
–  remove friction in B2B scenarios
–  enabler for the cloud

•  Federated identity has implications
–  amplification of existing attacks
–  user credentials gain power – users need to be aware of that
–  poor application design may open up even more critical

vulnerabilities
–  even when technically sound – users may reject it

