

Securing IPv6 in the Cisco Space

Christopher Werny <cwerny@ernw.de>

Agenda

- Cisco First-Hop Security Intro
- Secure Layer-2 configuration
- Secure Layer-3 configuration
- Routing Protocol Security configuration
- FHRP Protocol Security configuration
- Traffic Filter and Extension Header Filtering

Cisco First-Hop-Security

 Cisco name for various security features in IPv6

- Staged in three phases
- Every Phase will release/released more IPv6 security features to achieve feature parity with the IPv4 world

Phase I

- Introduced RA Guard and Port based IPv6 ACLs
- In the beginning, only supported on datacenter switches
 - Since 15.0(2) supported on C2960S and C3560/3750-X

Phase II

- Available since end of 2011/ beginning of 2012 (depending on the plattform)
- Introduced DHCPv6 Guard and NDP Snooping
 - DHCP Snooping and Dynamic ARP Inspection in the IPv4 World
- As of march 2013, no support on accesslayer switches available
 - Only on Cat 4500, Cat 4948 (E/F) and 7600 Routers

Phase 3

- Available since December 2012

- Introduced Destination-Guard
 - To mitigate Neighbor Cache Exhaustion attack
- Only available on the same switches as in Phase 2

General Principles on FH Command Interface[1]

Each FH feature provides a configuration mode to create and populate policies (+ one implicit "default" policy)

ipv6 nd raguard policy MYHOST
 device-role host

Each FH feature provides commands to attach policies to targets: box,vlan, port

```
vlan configuration 100
ipv6 nd raguard attach-policy MYHOST
ipv6 snooping
interface e0/0
ipv6 nd raguard attach-policy MYROUTER
```

Packets are processed by the lowest-level matching policy for each feature

Packets received on e0/0 are processed by policy ra-guard "MYROUTER" AND policy snooping "default"

Packets received on any other port of vlan 100 are processed by policy ra-guard "MYHOST" AND policy snooping "default"

Cisco First Hop Security

Phase I

www.ernw.de

RA Guard – Host Mode

 Implements *isolation* principle similar to other L2 protection mechanisms already deployed in v4 world.

- RFC 6105

- Works quite well against some attacks.
 - But it seems currently no logging or port deactivation can be implemented. RA packets are just dropped.
- Can be easily circumvented

RA Guard – Host Mode

Router# show version Cisco IOS Software, s3223_rp Software (s3223_rp-IPBASEK9-M), Version 12.2(33)SXI5, RELEASE SOFTWARE (fc2)

Port-based ACLs

4948E(config) #ipv6 access-list IPv6

4948E(config-ipv6-acl)#deny ipv6 any any undeterminedtransport

4948E(config-ipv6-acl)#deny icmp any any routeradvertisement

4948E(config-ipv6-acl) #permit ipv6 any any

4948E(config)#interface g1/19

4948E(config-if)#ipv6 traffic-filter IPv6 in

Block Forwarding of RAs on Infrastructure Level

- RA Guard or ACLs
 - _Or_!
- RA Guard currently (Mar 2013) not a bullet-proof solution.
 - **- DF switch in THC's** fakerouter6 **does the trick**.
 - See also http://www.insinuator.net/2011/05/yet-another-update-on-ipv6-security-some-notes-from-the-ipv6-kongress-in-frankfurt/
- ACLs might be operationally expensive.
 - Probably port based ACLs not part of your current ops model, right?
 - HW support needed
 - http://docwiki.cisco.com/wiki/Cisco_IOS_IPv6_Feature_Mapping#IPv6_Features
 - Still, currently best protection approach that's available
 - See also http://www.insinuator.net/2012/03/the-story-continues-another-ipv6-update/

- RA Guard will (hopefully) evolve

- Some IETF drafts out there to address evasion problem
 - http://tools.ietf.org/html/draft-ietf-v6ops-ra-guard-implementation-07

Evaluation of RFC 6104 Controls

Control	Sec Benefit	Operational Feasibility
Manual configuration	4	1
RA Snooping (RA Guard)	4	4
Using ACLs	5	3
SEcure Neighbor Discovery (SEND)	5	1
Router Preference	2	5
Relying on Layer 2 Admission Control	5	2
Host-Based Packet Filters	3	1
Using an "Intelligent" Deprecation Tool	2	1
Using Layer 2 Partitioning	4	3

Cisco First Hop Security

Phase II

www.ernw.de

DHCPv6 Guard

- Similar functionality to DHCP Snooping in the IPv4 world
 - But more sophisticated
- Blocks reply and advertisement messages that originates from "malicious" DHCP servers and relay agents
- Provides finer level of granularity than DHCP Snooping.
- Messages can be filtered based on the address of the DHCP server or relay agent, and/or by the prefixes and address range in the reply message.

DHCPv6 Guard

ipv6 access-list acl1
 permit host FE80::A8BB:CCFF:FE01:F700 any
ipv6 prefix-list abc permit 2001:0DB8::/64 le 128

ipv6 dhcp guard policy pol1
 device-role server
 match server access-list acl1
 match reply prefix-list abc
 trusted-port <optional>

interface GigabitEthernet 0/2/0
switchport
ipv6 dhcp guard attach-policy pol1 vlan add vlan 10

vlan 10 ipv6 dhcp guard attach-policy pol1

show ipv6 dhcp guard policy pol1

Cisco IPv6 Snooping

- IPv6 Snooping is the basis for several FHS security mechanisms
 - Including ND Inspection and address glean
- When configured on a target (VLAN, Interface etc.), it redirects
 NDP and DHCP traffic to the switch integrated security module

IPv6 ND Inspection

- Learns and secures bindings for addresses in layer 2 neighbor tables.
- Builds a trusted binding table database based on the IPv6 Snooping feature
- IPv6 ND messages that do not have valid bindings are dropped.
- A message is considered valid if the MACto-IPv6 address is verifiable

IPv6 ND Configuration

- Device (config) #ipv6 snooping policy policy1
- Device (config-ipv6-snooping) # ipv6 snooping attach-policy policy1

- Device(config) # ipv6 nd inspection policy policy1
- Device (config-nd-inspection) # drop-unsecure
- Device (config-nd-inspection) # device monitor

Cisco First Hop Security

Phase III

www.ernw.de

IPv6 Destination Guard

Overview

- Blocks and filters traffic from an unknown source and filters IPv6 traffic based on the destination address.
- Uses "first-hop security binding table"
 - populates all active destinations into it and blocks data traffic when the destination is not identified.

IPv6 Destination Guard

Requirements

 Implemented in Cisco 7600, Cisco Catalyst 4500/4900, 3560-X/3750-X and 2960S

 Requires 15.3S, 15.2S, 15.1SG or 15.0(2)SE

IPv6 Destination Guard

Example Configuration

Router(config) # vlan configuration 300 Router(config-vlan-config) # ipv6 destination-guard attachpolicy destination % Warning - 'ipv6 snooping' should be configured before destination-guard

Router(config-vlan-config)# ipv6 snooping attach-policy ND Router(config)# vlan configuration 300 Router(config-vlan-config)# ipv6 destination-guard attachpolicy destination Router(config-vlan-config)#

Router# show ipv6 destination-guard policy destination Destination guard policy Destination:

enforcement always

Target: vlan 300

Layer 3 configuration

Suppress Emission of RAs on Infrastructure Level

Comes in different flavors (full suppress vs. clearing A-flag)

Will just prevent "benign" host processing, but not prevent attacks against hosts from their (potentially compromised) neighbors.

Full suppression

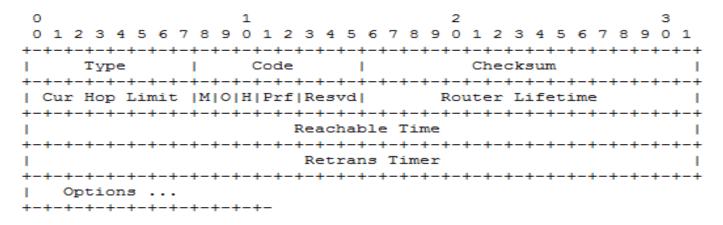
– Cisco:

```
L3_device(config-if)#ipv6 nd ra suppress [all]
```

- On some devices/OSs RAs might still be triggered by some host on local link sending router solicitation (RS) packets.
 - E.g. in Cisco land different behavior between 12.4 and 15.x releases. See also CSCth90147.
- Default route will have to be configured statically on hosts then, too.
 - Might have influence on first hop redundancy approach.
 Probably not relevant for these types of networks though.
- Must be kept in mind for future activities in \$SEGMENT.
 - People (other admins...) might expect it (RAs) "just to be there".
 - We don't like the suppress_RAs approach anyway. Deviation from default...

Tuning the Neighbor Cache Size

- ipv6 nd cache interface-limit
 - See also http://www.cisco.com/en/US/docs/iosxml/ios/ipv6/command/ipv6-i3.html#GUID-FC37F82B-5AAC-4298-BB6C-851FB7A06D88
 - This one provides some logging, too. Might come in handy for attack detection.
 - Mar 10 15:11:51.719: %IPV6_ND-4-INTFLIMIT: Attempt to exceed interface limit on GigabitEthernet0/1 for 2001:DB8:0:900D::2:329A (Souse it in any case!)
 - on IOS-XE 2.6: ipv6 nd resolution data limit.


Unicast Reverse Path Forwarding for IPv6

- Supported for IPv6 since 12.2(13)T / 12.2(28)SB
 - Before using it in an production environment, check if it is done in software on your platform (e.g. Cat 6500 with SUP720).
- interface GigabitEthernet 5/0/0
- ipv6 verify unicast reverse-path

Default Router Preference

In RFC 4191 an additional flag was introduced within RA messages to indicate the preference of a default router in case more than one are present on the local link.

Router Preference Values

- The preference values are encoded as a two-bit signed integer with the following values:
 - 01 High
 - 00 Medium (default)
 - 11 Low
 - 10 Reserved

RA Messages

- When the *preference* is set, the RA messages look like:

```
Internet Control Message Protocol v6
                                               Internet Control Message Protocol v6
    Type: 134 (Router advertisement)
                                                   Type: 134 (Router advertisement)
   Code: 0
                                                   Code: 0
   Checksum: 0xded0 [correct]
                                                   checksum: 0xcdc6 [correct]
   Cur hop limit: 64
                                                   Cur hop limit: 64
 Flags: 0x08
                                                 🖃 Flags: 0x00
      0... = Not managed
                                                     0... = Not managed
      .0.. .... = Not other
                                                     .0.. .... = Not other
      .. 0. .... = Not Home Agent
                                                     ..... = Not Home Agent
      ...0 1... = Router preference: High
                                                     ...0 0... = Router preference: Medium
    Router lifetime: 1800
                                                   Router lifetime: 1800
    Reachable time: 0
                                                   Reachable time: 0
    Retrans timer: 0
                                                   Retrans timer: 0
  ICMPv6 Option (Source link-layer address)
                                                 ICMPv6 Option (Source link-layer address)
  ■ ICMPv6 Option (MTU)

■ ICMPv6 Option (MTU)

  ICMPv6 Option (Prefix information)
                                                 ICMPv6 Option (Prefix information)
```


Configuration (Cisco)

- The configuration of the preference is done with the following command:
 - Router(config)# interface f0/1
 - Router(config-if) # ipv6 nd router-preference {high | medium | low}
- If the command is not configured, the default value of medium will be used in the RA messages.
- Command available since IOS Version 12.4(2)

Miscellaneous

- Miscellaneous stuff already known from IPv4, but still applicable in the IPv6 World:
- (config-int)#no ipv6 redirects
 (config-int)#no ipv6 mask-reply
- ¬ (config) #no ipv6 source-route

Routing Protocol Security

Routing Protocol Security

- BGP, ISIS, EIGRP no change required
 - MD5 authentication of the routing peers
- OSPFv3 has changed and pulled the authentication from the protocol and instead rely on transport mode lpsec
 - But see draft-ospf-auth-trailer-ospfv3

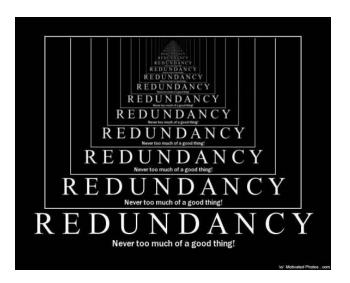
Best Current Practices

Interface Ethernet0/0

- ipv6 ospf 1 area 0
- ipv6 ospf authentication ipsec spi 500
 md5 1234567890ABCDEF1234567890 ABCDEF

Interface Ethernet0/0

- ipv6 authentication mode eigrp 100 md5
- ipv6 authentication key-chain eigrp 100 MYCHAIN
- Key chein MYCHAIN
 - Key 1
 - Key-string 1234567890abcdef



IPv6 FHRP Protocols

www.ernw.de

FHRP

 Not much changed in the FHRP Space

- Same mechanisms in the IPv4 world are used in IPv6 for securing FHRP protocols
 - Which boils down to MD5 authentication

HSRPv2

- HSRP IPv6 group has a virtual mac address
 - Derived from the HSRP-group
- Virtual IPv6 link-local address
 - Derived from the virtual-mac

- Uses UDP Port 2029

HSRPv2 Configuration

- interface FastEthernet0/0
- no ip address
- ipv6 address 2020:AB8:2001::1010/64 ipv6
 enable standby version 2
- standby 1 ipv6 autoconfig
- ¬ standby 1 ipv6 2001:DB8::2/64
- ¬ standby 1 ipv6 2001:DB8::3/64
- ¬ standby 1 ipv6 2001:DB8::4/64
- standby 1 authentication md5 key-string troopers

GLBP Configuration

- interface FastEthernet0/0
- no ip address
- ¬ ipv6 enable
- ipv6 address 2020:AB8:2001::1010/64
- glbp 10 ipv6 FE80::1
- glbp 10 timers 5 18
- ¬ glbp 10 load-balancing host-dependent
- glbp 10 priority 254
- Glbp 10 authentication md5 key-string troopers

Traffic Filter and Extension Header Filtering

Basic Bogon Filter List 1/2

Packets to Block	Addresses
Deny unspecified address	::
Deny loopback address	::1
Deny IPv4-compatible addresses	::/96
Deny IPv4-mapped addresses (obsolete)	::ffff:0.0.0/96
Deny automatically tunneled packets using compatible addresses (deprecated RFC 4291)	::0.0.0/96
Deny other compatible addresses	::224.0.0.0/100 ::127:0.0.0/104 ::0.0.0.0/104 ::255.0.0.0/104

Basic Bogon Filter List 2/2

Packets to Block	Addresses
Deny false 6to4 packets	2002:e000::/20 2002:7f00::/24 2002:0000::/24 2002:ff00::/24 2002:oa00::/24 2002:ac10::/28 2002:c0a8::/32
Deny link-local addresses	fe80::/10
Deny site-local addresses (deprecated)	fec0::/10
Deny unique-local packets	Fc00::/7
Deny multicast packets (only as a source address)	Ff00::/8
Deny documentation address	2001:db8::/32
Deny 6Bone addresses (deprecated)	3ffe::/16

IPv6 ACL@ERNW


Up to Discussion:

deny ipv6 host ::1 any log remark ===Deny IPv4-compatible=== deny ipv6 ::/96 any log remark ===Deny IPv4-mapped=== deny ipv6 0:0:0:FFFF::/96 any log remark ===Deny Site-Local=== deny ipv6 FEC0::/10 any log remark ===Deny ULA=== deny ipv6 FC00::/7 any log remark ===Deny Documentation=== deny ipv6 2001:DB8::/32 any log remark Deny ===6Bone=== deny ipv6 3FFE::/16 any log remark ===Permit T-COM Address=== permit icmp host 2003:60:4010::1 any log remark ===Deny own address space inbound=== deny ipv6 2003:60:4010::/48 any log remark ===Permit icmp=== permit icmp any any log

- remark ===Allow DNS===
- permit udp any eq domain 2003:60:4010::/48 log
- remark ===TCP Established===
- permit tcp any any established
- remark ===Deny Rest===
- sequence 270 remark ===mx1.ernw.net===
- permit tcp any host 2003:60:4010:10A0::11 eq smtp
- permit tcp any host 2003:60:4010:10A0::11 eq 22
- remark ===www + troopers===
- permit tcp any host 2003:60:4010:1090::11 eq www
- permit tcp any host 2003:60:4010:1090::11 eq 443
- permit tcp any host 2003:60:4010:1090::12 eq www
- permit tcp any host 2003:60:4010:1090::12 eq 443
- permit tcp any host 2003:60:4010:1090::13 eq www
- remark ===Insinuator===
- permit tcp any host 2003:60:4010:11B0::11 eq www

Full Bogon List

- Full Bogon List can be found here:

<u>https://www.team-cymru.org/Services/Bogons/fullbogons-ipv6.txt</u>

Extension Header

The ASA supports Extension Header Filtering since 8.2(2)

 Modular Policy Framework used in conjunction with service-policy on an interface

Extension Header

- The ASA to selectively drop IPv6 packets based on following types of extension headers found anywhere in the IPv6 packet:
- •Hop-by-Hop Options
- •Routing (Type 0)
- •Fragment
- •Destination Options
- •Authentication
- •Encapsulating Security Payload

Configuration Parameters

- Class-map ipv6-ext-hdr match header count gt. 2

- ¬ policy-map type inspect ipv6
 - Class ipv6-ext-hdr
 - action drop
- Service policy ipv6 in interface outside

References

[1] IPv6 First Hop Security: Eric Vyncke